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The influence of thermocapillary forces on buoyancy-driven convection is numeri- 
cally simulated for shallow open cavities with differentially heated endwalls and 
filled with low-Prandtl-number fluid. Calculations are carried out by solving two- 
dimensional NavierStokes equations coupled to the energy equation, for three 
aspects ratios A = (length/height) = 4, 12.5 and 25, and several values of the 
Grashof number (up to 6 x lo4) and Reynolds number (IRel < 1.67 x lo4). Thermo- 
capillarity can have a quite significant effect on the stability of a primarily buoyancy- 
driven flow. The result of the combination of the two basic mechanisms (thermo- 
capillarity) and buoyancy) depends on whether their effects are additive (positive 
Re) or opposing (negative Re) ; counter-acting mechanisms yield more complex flow 
patterns. The critical Grashof number Gr, for the onset of the unsteady regime is 
found to decrease substantially within a small range of negative Re, and to increase 
for positive Re (and also for large negative Re).  For Cr = 4 x lo4, A = 4 and small 
negative Reynolds numbers, -2.4 x lo3 < Re < 0,  mono-periodic and bi- or quasi- 
periodic regimes are shown to exist successively, followed by a reverse transition. 
The development of the instabilities from an initial steady-state regime has been 
investigated by varying Re for Gr = 1.5 x lo4 (below Gr, at Re = 0); the onset of 
buoyant instabilities is enhanced in a narrow range of Re only ( - 1200 < Re < - 200). 
It is also noteworthy that for small enough Grashof numbers (e.g. Gr = 3 x lo3), a 
steady-state solution prevails over the whole range of Reynolds numbers investi- 
gated. This means that a critical Grashof number exists below which the effect of 
the thermocapillary forces is no longer destabilizing. 

1. Introduction 
The present study addresses combined buoyancy and thermocapillary convection 

in fluid contained in shallow open cavities, where the flow is driven by a temperature 
difference between isothermal vertical sidewalls. In this system with a free liquid-gas 
interface, the imposed temperature gradient generates simultaneously buoyancy- 
driven convection (due to a density variation in the liquid) and thermocapillary- 
driven convection (due to a surface-tension gradient induced by a temperature 
gradient along the liquid-gas interface). Attention is focused on the interaction of 
these two types of convections, which can coexist in a 1 -g as well as a low-gravity 
environment (Carruthers 1 9 7 7 ~ ;  Ostrach & Pradhan 1978 ; Schwabe 1988; Schwabe 
& Scharmann 1981 ; Ostrach 1982 ; Gershuni, Zhukhovitsky & Nepomniashchy 
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1989). Our interest in such flows arises from their importance for many engineering 
systems such as that of crystal growth where the quality of the crystal grown can be 
strongly influenced by the fluid motion. More precisely this numerical study was 
motivated by experiments conducted by Favier and co-workers to gain a 
fundamental understanding of thermocapillary effect on growing metallic single 
crystals (e.g. see Camel, Tison & Favier 1986; Camel & Favier 1988). So, up to now 
results have been restricted to low-Prandtl-number fluids (typically, Pr = 0.015). 
Reviews of the work concerning hydrodynamic aspects of crystal growth can be 
found in the survey papers of Carruthers (1977b), Pimputkar & Ostrach (1981), 
Azouni (1981), Hurle (1983), Polezhaev (1984), Langlois (1985) and Muller (1988) for 
example. Note that despite the technological importance of low-Prandtl-number 
fluids there is a lack of experimental velocity and temperature field measurements as 
they are very difficult to obtain owing to opacity, temperature level, etc. 

Experimental investigations (Utech, Brower & Early 1967 ; Hurle, Jakeman & 
Johnson 1974; Chun 1980; Favier, Rouzaud & Comera 1986, among others) have 
shown that temperature fluctuations, caused by an unsteady buoyancy-driven 
convective flow, occur when the thermal gradient exceeds a certain critical value. 
These instabilities are known to contribute to the inhomogeneity of the resulting 
crystal (Hurle 1967; Carruthers 1977 b ;  Rosenberger 1979; Polezhaev 1984; and 
Miiller 1988). However, the basic mechanisms giving rise to these instabilities are still 
not well understood owing to their complexity. 

Our main goal is to clarify the laminar flow transitions from a steady state to an 
oscillatory state, a problem which received special attention in the case of purely 
buoyancy-driven flow during a recent GAMM-Workshop (Roux 1990). As most of the 
growing techniques involve containers with small width (relative to the vertical 
plane defined by the gravity force and the imposed temperature gradient), the 
present numerical study is restricted to as two-dimensional model in a rectangular 
cavity of aspect ratio A ,  where A = lengthldepth. The relevant dimensionless 
parameters are the Prandtl, Grashof and surface- tension Reynolds numbers, which 
are defined as Pr = v / K ,  Gr = g/3H4AT/Lv2 and Re = ( -  aa/aT) H2AT/Lpv2. Some- 
times, the classical Marangoni number, Ma = Re Pr, will be also used. The relative 
magnitude of buoyancy to thermocapillary forces is given by the dynamical bond 
number, defined as Bd = Gr/Re = pg/3H2/( -aa/aT).  

We will first consider a cavity with a moderate aspect ratio, A = 4, and various 
Grashof number values up to Gr = 4 x lo4, which is larger than the critical value for 
the transition to an unsteady flow (see 52.1). Both negative and positive values of 
Reynolds number (corresponding to positive and negative values of aa/aT, 
respectively) will be considered. I n  fact, most real fluids have negative aa/aT, but 
for certain alloys under certain conditions acr/aT can be positive (e.g. tin-bismuth 
with 5% bismuth, studied by Camel & Favier 1988). We will also study the flow 
regimes in larger cavities with A = 12.5 and 25, for two values of Grashof number, 
Gr = 3 x lo3 and 6 x lo3 which are below the critical one for an infinitely long cavity 
(see 52.1). A specific study of steady-state regimes will be presented in 56 giving 
correlation laws characterizing the surface velocity for large-aspect-ratio cavities, 
4 6 A < 25, at large enough IRel. 

This paper complements a previous one by Ben Hadid, Laure & Roux (1989) on 
the same topic, but devoted to the case of A = 25 and containing theoretical results. 
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2. Summary of previous work 
2.1. Oscillations in purely buoyancy-driven flows 

By means of a stability analysis of the one-dimensional solution given by Birikh 
(1966) for flows in an infinite horizontal fluid layer with a free surface (Re = 0) ,  Laure 
& Roux (1987) showed that the first bifurcation to an unsteady flow regime 
corresponds to a two-dimensional structure ; the critical Grashof number for Pr + 0 
is Gr, = 7890. For Pr = 0.015, they found Gr, = 1.064 x lo4 for the case of a 
conducting wall and Gr, = 1.6 x lo4 for an insulating wall. 

For rectangular cavities of finite aspect ratio, Winters, Cliffe & Jackson (1987), and 
Winters (1988, 1990) carried out two-dimensional calculations and used bifurcation 
theory, and also determined the critical Grashof number for the transition from 
steady to unsteady flow. For Pr = 0 and A = 4, they found Gr, x 1.37 x lo4 which is 
about 75% higher than for infinite layer (A+ m). They showed that Gr, decreases 
with increasing aspect ratio and thus qualitatively confirmed the experimental 
results of Hurle et al. (1974). (See ROUX, Ben Hadid & Laure 1989.) In  addition, 
Winters (1990) pointed out a dependence of Gr, on the horizontal thermal boundary 
conditions, e.g. for Pr = 0.015, Gr, x 1.66 x lo4 in the insulating case, and Gr, x 
1.48 x lo4 in the conducting case. Thus, Gr, is higher in the insulating case; in fact, 
the difference between it and the conducting case becomes larger and larger as Pr 
increases. This effect of horizontal thermal boundary conditions was numerically 
confirmed by Ben Hadid (1989) and Pulicani (1989). The increase in stability for the 
insulating case is probably due to the temperature stratification, which is more 
effective in this case than for the conducting case. 

Numerical results by Ben Hadid & Roux (1990a) and by Randriamampianina 
et al. (1990) also showed that the two-dimensional oscillatory regimes are maintained 
for Gr 9 Gr,, in contrast with the case of a cavity with a rigid top (see the synthesis 
of the GAMM-Workshop, Roux 1990). The accurate spectral method used by Randria- 
mampianina et al. (1990) indicates that the oscillatory regime is mono-periodic until 
Gr x 2 x lo5 (which is 15 times higher than Gr,) and then a period doubling occurs. 

2.2. Pure thermocapillary Jlow 
The general class of flows induced by a thermocapillary force has been the subject of 
review articles by Levich & Krilov (1969), Ostrach (1982) and Davis (1987). There are 
a number of analytical papers about thermocapillary flows in a horizontal layer (see, 
for example, Birikh 1966; Yih 1968). Smith & Davis (1983) and Davis (1987) 
performed stability analyses of thermocapillary-driven flows subject to three- 
dimensional disturbances. 

Numerical calculations of thermocapillary-driven flows in open cavities were 
performed by Strani, Piva & Graziani (1983) for moderate aspect ratios (A  < 5 ) ,  and 
by Wilke & Loser (1983) and Ben Hadid & Roux (1990b) for large aspect ratios 
( A  = 4, 12.5 and 25). Ben Hadid et al. (1988) gave numerical results for the surface 
velocity in shallow cavities and showed that there is a transition from a viscous to 
a boundary-layer flow regime as the Reynolds number is increased, in agreement with 
experimental results of Camel et al. (1986). The limiting value of Re for the viscous 
regime was estimated to be Re/A < 20, while the transition to the boundary-layer 
regime occurs for Re/A > 200. For the boundary-layer regime, the surface velocity 
at  the middle of the cavity (scaled by vRe/H) is given by a simple relationship: 
vz-1, - - 0.95 (Re/A)-). 

Thermocapillary convection was observed under reduced gravity during the 
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Spacelab D1 mission (Metzger & Schwabe 1988; Lamprecht, Schwabe & Scharmann 
1990). Metzger & Schwabe (1988) studied the effect of the aspect ratio for deep 
cavities (A c 1)  by the varying the height of the cavity. They found that the surface 
velocity does not vary significantly when the aspect ratio is decreased. This indicates 
that the dynamical behaviour in deep and shallow cavities is fundamentally 
different. 

In addition, a numerical study by Zebib, Homsy & Meiburg (1985) showed a 
substantial change in flow structure when Pr varies from 0.01 to 50. The centre of 
the strong vortex, and subsequently the maximum of the surface velocity, are 
located near the cold wall for low Prandtl numbers and near the hot wall for 
Pr = 50. This is the result of a larger interaction between fluid flow and thermal field 
for larger Pr. 

2.3. Combined buoyancy and thermocapillary forces 

Laure & Roux (1989) also performed a stability analysis of the Birikh (1966) solution 
for A +  CQ, in the case of a free surface with Re + 0.  They found that the f i s t  
bifurcation to an unsteady flow regime corresponds to a two-dimensional structure 
and occurs at  a critical Grashof number, Gr,, which tends asymptotically to a 
limiting value when Pr + 0. This limit strongly depends on the ratio Re/Gr which 
characterizes the relative influence of thermocapillarity and buoyancy. Laure & 
Roux (1989) found, for example, Gr, x 1.6 x lo4 for RelGr = 0.025. This is in 
agreement with the previous results by Myznikov (1981) for W =  0.1 (where 
W = 4 Re/Gr) reported by Gershuni et al. (1989) ; these results were also reported by 
Polezhaev (1984) but unfortunately with an inconsistent definition of the parameters. 
All these results show that thermocapillarity delays the onset of buoyancy-induced 
oscillations, for positive Re. Critical values (neutral stability curves) of Gr, have been 
also obtained for negative Re, at various Pr. For a fixed Pr, in the interval C 
Pr < 5 x the stability diagram of Gr, in terms of Re presents a minimum for 
Re w -300 (see figure 3 in Ben Hadid et al. 1989). It is interesting to note that the 
experiments of Camel et al. (1986) for liquid tin (Pr x 0.015) in large-aspect-ratio 
cavities did not exhibit time-dependent flow. 

Kirdyashkin (1984) compared analytical results with experimental data for large 
horizontal cavities 7 < A  C 90 filled with larger-Prandtl-number liquids (water, 
ethyl-alcohol96 %), and showed that far from the endwalls the flow is plane-parallel. 
As a rule there is satisfactory agreement between experimental and analytical values 
in the case of a small temperature gradient. 

Experimental results for combined buoyancy and thermocapillary flows in cavities 
have been performed by Villers & Platten ( 1 9 8 7 ~ )  and Villers (1989) in a 
water-ethanol mixture (Pr x 4-7). In that case oscillatory regimes with a maximum 
of amplitude perturbation near the free surface were observed, indicating that the 
oscillations are induced at  the surface. In addition, the authors showed that these 
oscillations are damped when the depth of liquid is increased and thus demonstrated 
the stabilizing effect of buoyancy forces in this case. 

Ground-based experiments performed by Lamprecht et al. (1990) for paraffin 
(Pr w 49) in a small-aspect-ratio cavity (A = 12 and 0.5) revealed that for small 
values of the temperature difference (AT z lo", i.e. Gr x 6 x lo4 and Re w 1.6 x lo3) 
one large convection cell was formed, but when the temperature difference is 
increased (AT w 60°) the flow structure separates into two distinct complicated parts 
(thermocapillary-driven near the free surface and buoyancy-driven in the rest of the 
cavity). These types of flow structures are more noticeable for lower aspect ratio (e.g. 
A = 0.5). This behaviour was also found by Metzger & Schwabe (1988) for ethanol 
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(Pr x 17), a one-main-cell structure filling the cavity for AT x lo (Gr x 3.6 x lo4 and 
Re x 1 x lo3), and a two-cell structure with an upper cell controlled by thermo- 
capillarity and a lower cell controlled by buoyancy for AT x 4' (Gr x 1.4 x lo5 
and Re x 4 x lo3). In addition, Metzger & Schwabe (1988) used a system with two 
sets of heating blocks allowing a temperature gradient to be generated in the bulk 
(positive or negative) independently from that along the free surface. They showed 
that even at  high Grashof numbers (caused by increasing the cavity depth) the 
thermocapillarity is the dominant mechanism near the upper surface. Both positive 
and negative Grashof numbers enhance the velocity in the surface vortex. 

Kamotani, Ostrach & Lowry (1982) also performed experiments for large-aspect- 
ratio cavities with radiative heating from a line source placed above the free surface 
of silicone oil or fluorinert fc-43. For the latter fluid the authors showed a weak 
temperature fluctuation near the free surface. Unfortunately they did not give any 
values for their dimensionless parameters. However, they mention that this 
oscillation is of small magnitude and its behaviour is not as well defined as in a half- 
floating-zone configuration (cylindrical geometry), for Ma > lo4. 

It is also interesting to mention that numerous experiments have been performed 
for full or half-floating-zone configurations and showed that combined buoyancy and 
thermocapillary convection can often lead to oscillatory regimes, sometimes with 
complex behaviour, e.g. oscillations with amplitude modulation (see, for example, 
the survey paper by Schwabe 1988). 

Combined buoyancy and thermocapillary convection in a differentially heated 
cavity has also been the subject of several numerical studies. Cavities with A = 1 
were considered by Zebib et al. (1985), Cuvelier & Driessen (1986) and Bradley & 
Homsy (1989). Bergman & Ramadhyani (1986) and Bergman & Keller (1988) 
presented computational results for A 2 1. The effect of thermocapillary forces on 
the buoyancy-driven oscillatory flow in a cavity with A = 4, Pr = 0.015 and 
conducting horizontal boundaries was studied by Villers & Platten (1990) for 
-20 < M u  < 200 and lo4 < Gr < 5 x lo4, and by Ben Hadid & Roux (1989) for 
-2  x lo3 < Re < 8 x lo2 and 1.45 x lo4 < Gr < 2 x lo4. These numerical results all 
show that a small negative Re (opposing effect) provides a destabilizing force and 
that when Re decreases the frequency and the mean flow rate decrease while the 
amplitude of the oscillations increases. On the other hand, if an oscillatory solution 
exists for a given Re and is taken as the initial state, these initial oscillations can be 
damped by increasing Re ; in fact, the flow reaches its steady state more and more 
rapidly as Re increases. 

3. Problem description 
3.1. Governing equations 

We consider a two-dimensional rectangular cavity of length L and height H as shown 
in figure 1. The vertical sidewalls of the cavity are maintained a t  temperatures Th and 
T,, where Th > T,. The surface tension on the upper boundary is assumed to vary 
linearly with temperature: cr = a,[l-y(T-T,)] where y = -(l/a,,) (aa/aT) is the 
temperature coefficient of surface tension and where the subscript 0 refers to a 
reference state. The upper boundary is assumed to be flat (Ca = laa/aflAT/a, 4 1) 
and the fluid above the surface is assumed to be a gas of negligible viscosity and 
conductivity, and therefore, will not influence the flow and temperature fields in the 
liquid. The problem is non-dimensionalized by using H 2 / v ,  H ,  and AT/A, as scale 
quantities for respectively time, length and temperature, where AT = Th - T, and v 
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is the kinematic viscosity. As our main interest is the influence of the thermo- 
capillarity on an established buoyancy-driven flow, a characteristic buoyancy 
velocity, vGr:/H, is used as the reference velocity. The dimensionless equations 
governing the motion of a Newtonian fluid in the Boussinesq approximation may be 
written in a vorticity-stream function formulation as 

where 5, ~, and 0 are the vorticity, the stream function and the temperature, 
respectively, and T is a fictitious time introduced in (2) in order to accelerate the 
convergence procedure. The computational procedure was similar for each Grashof 
niimber: when a steady-state solution for large !Re1 exists, it is used as the initial 
condition for the next Re-value. 

3.2. Boundary conditions 
The problem involves two driving forces : buoyancy acting as a body force in the bulk 
and thermocapillarity acting on the upper surface of the fluid. The dynamical 
boundary condition on this upper surface relates the velocity gradient to the 
temperature gradient through the following dimensionless formula (see Birikh 1966) : 

av  - Re a0 
ax Grtay’ 
- - _- 

the other conditions on the horizontal boundaries are 

v(0, y)  = u(0, y) = 0; u(1, y) = 0; 

and 

for the conducting case; and 

e(0, y) = e(1, y) = A-Y 

ae ae 
-(O, y) = - ( L Y )  = 0 ax ax 

for the insulating case. 

(4) 
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When the condition (6a) applies, the vorticity at  the free surface is constant. The 
boundary conditions on the rigid vertical walls are 

O ( x , O )  = A ;  B(x,A) = 0, 

and u(x, 0) = v(x, 0) = U(X,A) = v ( x , A )  = 0. 

The effect of interface deformability on the onset of instability has not been 
investigated but its influence on the flow velocity has been given by Strani et al. 
(1983) for the steady-state regime a t  relatively low Reynolds numbers. The shape of 
the gas-liquid interface in a square cavity has been computed by Cuvelier & Driessen 
(1986) for different values of driving forces. For pure buoyancy flow, the pressure is 
higher in the upper hot corner. Consequently, there is an elevation of the free 
boundary in this corner and a depression near the cold corner. For pure 
thermocapillary flow, an opposite effect is observed. For combined convections the 
free surface is flattened by increasing the (positive) Bond number, Bo = gpoL2/uo. 
Cuvelier & Driessen also showed that the free-surface shape strongly depends on the 
Ohnesorge number (Oh = ,u/(pou,L)~) .  When Oh is small (e.g. 0.05) the free surface 
is nearly horizontal. For larger Oh, distortion is less and less negligible. But for liquid 
metals, the surface-tension coefficient uo is generally high and thus Oh is small. 

In the above formulation (1)-(4), the free-surface deformation is neglected. This 
assumption is valid in crystal growth applications with small capillary (Ohnesorge) 
numbers and 90’ contact angles between the vertical solid wall and the meniscus. 

4. Numerical procedure 
The governing equations (1)-(3) are solved using an ADL (alternating direction 

implicit) technique with a finite-difference method involving forward differences for 
time derivatives and Hermitian relationships for spatial derivatives with a truncation 
error of O(At2, Ax4, Ay4) (see Hirsh 1975; Roux et al. 1979). Boundary vorticity was 
updated with an equation exhibiting fourth-order accuracy. The derivation of the 
discretized equations for the two-dimensional problem is not given here but it follows 
the approach described in Roux et al. (1979) and Ben Hadid (1989). A block 
tridiagonal matrix inversion algorithm (Thomas algorithm) is employed for the 
finite-difference form of (1)-(3). The convergence criterion for the Navier-Stokes 
equations is based on the local vorticity (maximum relative variation of vorticity less 
than 0.01 %). 

In  order to accurately describe gradients in boundary layers which develop with 
thickness S - Re-: at large Re (Ben Hadid et al. 1988), it  is necessary to use a non- 
uniform grid in the x-direction. A non-uniform grid is also needed in the y-direction 
since the flow is asymmetric even at moderate Grashof and Reynolds numbers. 
Previous simulations of two-dimensional buoyancy-driven convection demonstrated 
the importance of grid resolution. In particular, for low-Prandtl-number fluids, i t  
was found that a coarse grid in the boundary regions delayed the onset of oscillatory 
regimes. Thus, grid refinement is needed near the boundaries and in the ‘vortex 
region’ which develops in the vicinity of the endwalls depending on the relative 
strength of thermocapillary and buoyancy flows. Such a grid refinement is achieved 
by using the coordinate transformation proposed by Thompson, Thames & Mastin 
(1974). 

The accuracy of the results was assessed by increasing the number of grid points 
in each spatial direction. For example, some flow characteristics such as the mean 
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- - 
Gr Grid size $,,,,,* $Inax f 

25 x 81 

41 x 121 

25 x 81 

41 x 121 

25 x 81 
6 x  lo4 31 x91 

41 x 121 

1.5 x 104 31 x 91 

4x104 31 ~ 9 1  

0.5948 
0.5975 
0.5960 

0.6473 
0.6503 
0.6500 

0.6565 
0.6597 
0.6573 

14.86 
15.37 
15.10 

16.14 
16.53 
16.46 

24.40 
24.20 
24.15 

31.32 
31.12 
3 1.05 

TABLE 1 .  Accuracy tests for A = 4, Re = 0 and insulated horizontal boundaries 

- 
value of the maximum of the stream function, $.,,,, its rate of fluctuation, 
A~max/$max, and the oscillation frequency, are presented in table 1 ,  for A = 4 and 
Re = 0. Comparisons between a 31 x 91 and a 41 x 121 variable - grid show that 31 x 91 
grid is sufficient for an accuracy of better than 0.3 YO for and frequency f. The 
31 x 91 grid is built in such a way that the ratio between the smallest step of a 
variable grid and that of a uniform grid is of order 4 at the cold corner and of order 
2 a t  the hot corner (for Re > 0) ; the grid spacing is gradually increased away from 
the boundaries. An opposite stretching is used for Re < 0, with larger grid refinement 
at the hot corner. 

The effect of the grid has also been investigated for large aspect ratios. For 
A = 12.5 a non-uniform 31 x 201 grid (with local refinement near the endwalls) was 
used for the steady asymmetric flows as well as a uniform 31 x 251 grid for some cases 
(mainly for unsteady flows). For A = 25, the majority of solutions reported in this 
paper were obtained with a non-uniform 31 x 251 grid for steady flows and a uniform 
31 x 401 grid for unsteady flows. 

The results of numerical experiments carried out for shallow cavities are described 
hereinafter; the prominent effects of the governing parameters (e.g. Gr, Re and A )  on 
the flow structure will be illustrated by contour plots of streamlines and isotherms 
in the steady-state cases, and by iso-$ plots and time histories of some characteristic 
quantities in the unsteady cases. The influence of the Grashof number for purely 
buoyancy-driven (oscillatory) flows will be presented in $5.1 for A = 4. A discussion 
of the effect of both negative and positive Reynolds numbers will be presented for 
A = 4 (in $5.2) and for A = 12.5 and 25 (in $5.3). The steady-state flow structure 
which prevails for high lRel will be discussed in $6 for both opposing and additive 
cases. 

-- 

5. Unsteady flow results (small IRel) 
5.1. Pure buoyancy-driven jlows for moderate aspect ratio, A = 4 

The influence of natural convection on the flow when thermocapillary forces are 
absent is considered here. By setting Re = 0, the right hand side of (4) vanishes and 
thus the vorticity at the surface is constant and equal to zero. I n  a previous work, 
Ben Hadid & Roux (1990a) used Hermitian finite-difference methods to investigate 
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Gr 

FIGURE 2. Pure buoyancy convection for A = 4 and insulated horizontal walls: the relative 
amplitudes of $,,,ax for several Grashof numbers. 

FIGURE 3. Steady solutions in the pure buoyancy-convection case for A = 4; (a) streamline 
patterns and (b )  isotherms at Gr = 6 x lo3; (c) streamline patterns and (d) isotherms at 
Gr = 6~ lo3. 

the structure of the oscillatory flow regimes in a cavity with moderate aspect ratio 
A = 4 and conducting horizontal boundaries. For Pr = 0.015 the authors noted that 
for small Grashof numbers (Gr < 5 x lo3) a vortex progressively forms in the cold 
region leading to an asymmetric cellular flow. On further increasing Gr, a stationary 
bifurcation is reached with the appearance of a secondary cell followed by a 
transition to unsteady flow. A periodic flow occurs for Gr, x 1.5 x lo4 and persists for 
higher Gr (see 82.1). 

For insulating horizontal boundaries the transition to a periodic flow occurs for 
Gr, x 1.9 x lo4. This result agrees with those in the literature (see Winters 1988; 
Pulicani 1989). At Gr = 1.95 x lo4 the amplitude of the fluctuations increases very 
slowly; it is only 0.64% after 1.18 viscous time (t, = t v / H 2 )  units. Then, the 
dimensionless frequency calculated from the maxima of $max is close to 15. Since we 
initiate the solution from a steady-state condition and wait until the flow eventually 
reaches its stable oscillatory state, the length of the transient state increases 
drastically as the bifurcation point is approached. Calculations were carried out over 
0.7, 1.4 and 3.3 viscous time units to obtain a constant amplitude of oscillation for 
Gr = 2.5 x lo4, 2.2 x lo4 and 2 x lo4, respectively. The relative amplitude of ~ m a x  

for various Grashof numbers near the critical point (Hopf bifurcation) is displayed 
in figure 2. 
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Time 

FIQURE 4. (a) Time history of @max for A = 4 and Gr = 4.104. (6) Time-dependent solutions in the 
pure buoyancy-convection case shown in (a). the iso-@ lines correspond to  time values (i)-(v) in (a). 
The contour levels range from and zero in equal steps. 

Frequency Time 

FIQURE 5. Time-dependent solution for A = 4 and Gr = 4 x lo4. (a) Time history of the stream 
function at  x = 0.5 and y = 14, ( b )  its power spectrum. 

The qualitative features of steady flows are shown in figures 3 (a) and 3 (c) for two 
values of Gr below the onset of unsteady flow (Gr = 6 x lo3 and 1.5 x lo4). In these 
figures the flow circulates from left to right (from hot to cold) a t  the upper surface 
and the loss of flow symmetry is due to the loss of symmetry in dynamical boundary 
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conditions (bottom surface is rigid while the upper is stress-free). The flow structure 
exhibits the onset of a secondary stationary vortex (the primary one being in front 
of the cold wall) for Gr x 6 x lo3. For higher Gr the strength of the two vortices 
increases and a weak counter-rotating vortex appears near the bottom wall between 
the primary and secondary vortices. 

An additional increase of Gr leads to an increase of the amplitude of the time- 
dependent flow fluctuations. This evolution is continuous (see figure 2 )  and, for 
example, periodic fluctuations with a constant amplitude are attained after nearly 
0.3 viscous time units, for Gr = 4 x lo4. Figure 4(a)  displays a portion of the time 
history, and the flow structures corresponding to those points over a period identified 
in figure 4(a) are represented through iso-$ lines in figure 4(b).  The sequence of iso- 
$ lines (figure 4 b )  shows a periodic change of vortex shape (expansion and 
contraction) and reveals that the two main vortices (primary and secondary) 
intensify and create two reverse flows (counter-rotating) which are periodically 
created and destroyed. 

A more quantitative examination of flow fluctuations throughout the cavity 
reveals that the fluctuations increase from the bottom towards the upper surface and 
reach their maximum amplitude in the middle part of the cavity (y = $4). The 
behaviour of the fluctuations is illustrated by the time history of $(x = 0.5, y = A / 2 )  
in figure 5(a) .  The corresponding power spectrum in figure 5 ( b )  exhibits one 
frequency peak, indicating that this oscillatory flow is simply periodic P. 

5.2. Combined buoyancy and thermocapillary forces for A = 4 

With combined buoyancy and thermocapillary forces two cases will be examined : an 
additive (Re > 0 )  or opposing (Re < 0) effect. Previously, it  was stated that the 
thermocapillary force can significantly affect the dynamics of the instability in such 
a manner that oscillatory flow induced by buoyancy forces can be damped (inverse 

0.60 - ,. , , , . , . .  " " ". ' .  " ' .  " ' .  " ' .  ' ' .  - 
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FIGURE 7. Steady-state solution in the additive case for A = 4, Gr = 4 x lo* and Re = 2 x lo3; 
(u)  streamline patterns and ( b )  isotherms. 
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FIGURE 8. Time-dependent solutions for A = 4, Gr = 4 x lo4 and Re = - 2 x lo3. Time history of 
surface temperature at three horizontal locations: (a )  y = $A, ( b )  y = &4 and (c) y = $4. 

Time - 

bifurcation) when lRel exceeds a certain critical value. The first example here is for 
the 'additive case ' at Gr = 4 x lo4 : for Re = 600 the solution quickly resumed a time- 
periodic behaviour after some initial transient which is a consequence of a sudden 
change in the value of Reynolds number (figure 6a). The - amplitude of $-,,, of the 
periodic motion is about 8.73% of the mean value $max, and the dimensionless 
frequency was f = 27. For Re = 1.2 x lo3 and 2 x lo3 (figure 6 b  and 6c) the evolution 
of $-,,, over time clearly shows that the amplitude of - the oscillatory flow diminishes 
with increasing Re; it is 4.5% of the mean value $r,ax for Re = 1.2 x lo3. Upon 
further increasing the Reynolds number to Re = 2 x lo3 the flow reverts to a steady 
state after several damped oscillations. Inspection of figure 7 reveals that there is no 
drastic change in the flow structure with respect to the steady, purely buoyancy- 
driven flow (e.g. Re = 0, in figure 3) apart from an increase of the mean flow rate 
given by $,,,ax x 0.758. Inspection of the corresponding thermal field indicates that 
in the region of the hot wall the isotherms are nearly straight (the small noticeable 
distortion of the isotherms can easily be linked to the cellular flow). 

Obviously the coupling is expected to be more intricate in the 'opposing case '. In  
this case we observe that for Gr = 4 x lo4 the flow remains unsteady with a 
complicated time behaviour in a certain small range of negative Re. In this narrow 
range of Re there is a rapid change in the flow regime which evolves from a periodic 
state to a bi- or quasi-periodic state when the Reynolds number is varied from 

- 
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FIGURE 10. as for figure 8 but showing the surface velocity at y = $4, (a) time history, ( b )  its 
power spectrum. 
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Re = - lo3 to -2 x lo3. For Re = - lo3 the computation was started from an 
established purely buoyancy-driven oscillatory solution at  Gr = 4 x lo4 and Re = 0. 
The solution remained - unsteady with oscillation amplitudes of $max of about 23.3 YO 
of its mean value ($ma,.) and with a frequency of f  = 16.38. When Re is further 
decreased (Gr = 4 x lo4 and Re = -2  x lo3) the system evolves to a somewhat more 
complex time-dependent regime. The flow at Re = -2  x lo3 is no longer simple 
periodic, as evident in the time-history plot of the surface temperature for three 
horizontal locations y = +A, $4 and &4 presented in figures 8(a) ,  8 ( b )  and 8(c) ,  
respectively, and their corresponding power spectra in figures 9 ( a ) ,  9(b)  and 9(c) .  
This behaviour is confirmed by that of the surface velocity at y = Ld, presented in 
figure 10 (a)  with its density power spectrum in figure l O ( b ) .  Several new features are 
seen in these figures. The flow is characterized by two distinct frequencies : fi = 10.75 
and f2 = 7.22. As remarked by one of the reviewers the ratio f2/fi is close to 213 (so 
it is not possible to directly conclude that the regime is bi- or quasi-periodic). A 
supplementary peak corresponding tof' = 3.36 (i.e.f' x fi - fz ,  orfl x ifz) is observed 

a 
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6000 . 
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FIGURE 11. ( a )  Time-dependent solutions for A = 4, Gr = 4 x lo4 and Re = -2 x lo3. The iso+ lines 
corresponding to time values (i)-(viii) in ( b ) .  The contour levels range from +,,,ax and zero in equal 
steps. ( b )  As for (a )  but showing the time history of $,,,ax. 

in the density power spectrum. The same frequencies are observed a t  different 
positions in the flow fields but the amplitudes of the spectral components vary with 
location. In  particular, the amplitude offi is small for y = $4 (figure 9a)  and rapidly 
increases for y 2 $4 (figure 9 (b ,  c ) .  It is therefore difficult to characterize the flow field 
by only one time-behaviour recorded at  one fixed point. The calculated relative 
amplitude of the fluctuations of $max of this bi- or quasi-periodic motion is about 
54.8 %, which is much larger than that for a purely buoyancy-driven flow. The effect 
of these strong fluctuations is also visible on the time variations of the flow structure 
shown at eight instants over a period in figure 11 (a) (instants (i)-(viii) are displayed 
in the time-history segment of +max in figure l l ( b ) .  The opposing forces generate 
counter-rotating vortices at the surface which periodically grow and even split the 
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FIGURE 12. Time history of for A = 4, Gr = 4 x lo4 and Re = -2.4 x lo3. 

FIGURE 13. Comparison of steady flow structures in the opposing case for A = 4 and Gr = 4 x lo4. 
Streamline patterns for: (a) Re = -2.4 x lo3, ( b )  Re = -3  x lo5, (c) Re = -4  x lo3 and (d )  
Re = -6.667 x lo3. 

- 
flow (instants iii and viii). Despite the decrease of mean flow rate (e.g. $msx), the flow 
structure becomes more complex with an increase of oscillation amplitude and a 
decrease of frequency. 

Using an instantaneous solution obtained for Gr = 4 x lo4 and Re = 0 as initial 
condition, and further decreasing Reynolds number down to Re = -2.4 x lo3, the 
solution starts to oscillate with a large overshoot and undershoot (see figure 12) ; 
then oscillations are rapidly damped and the solution converges to a steady state. 
The structural feature of this steady-state solution is the presence, close to the upper 
boundary, of two counter-rotating vortices generated by the thermocapillary flow. 
Note that the reverse transition from an unsteady to a steady solution is not directly 
linked to disappearance of the multicellular flow structure close to the upper 
boundary and within the cavity. The solutions obtained for increasingly negative Re 
(Re = -6.67 x lo3) rapidly converge to a steady state and show that the two counter- 
rotating vortices present at  Re = -2.4 x lo3 coalesce and form a counter-rotating 
vortex which extends over the length of the cavity (see figures 13b and 13c). With 
further decreasing Re (Re = -6.67 x lo3) the top cell expands and spreads towards 
the hot vertical wall (figure 13d). In figure 13 it  is also clear that there is a progressive 
reduction of size and strength of the buoyancy vortex in the lower part of the cavity. 
For Re = -4  x lo3 the steady solution is indeed characterized by two superposed 
vortices, the upper only mainly driven by thermocapillarity and the lower one by 
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FIGURE 15. Steady solution in the opposing case for A = 4, Gr = 1.5 x lo' and Re = - 1.2 x lo3: 
(a) streamline patterns and (6) isotherms. 

buoyancy force. The same trends showing two vortices in the top left and right 
corners that coalesce a t  higher lRel have been previously reported for an aspect ratio 
A = 2 by Villers & Platten (1987b), and for A = 4 by Villers (1989) for Pr = 4. 

As a result of numerous computations for various negative Re-values, we conclude 
that the critical Grashof number for the onset of an oscillatory instability 
substantially decreases in the ' opposing case '. This is illustrated in figure 14 where 
the time evolution of ~,,, for Gr = 1.5 x lo4 and Re = -200, -400, - lo3 and 
- 1.2 x lo3 are shown. The flow remains steady for small lRel (Re = -200, figure 14a), 
while an oscillatory instability occurs in a certain range of negative Re (figure 14b, 
c). As is readily observed in other circumstances (Qr = 4 x lo4 and Re = -2.4 x lo3), 
the flow is no longer oscillatory when Re is further decreased (Re = - 1.2 x lo3, figure 
14d). So, a reverse transition to a steady flow occurs in the range - 1.2 x lo3 < 
Re < - lo3. The steady-state flow structure at Re = - 1.2 x lo3 is shown in 
figure 15 (a). As in figure 13 (a) for Bd = - 16.66, the flow structure in figure 15 (a) for 
Bd = - 12.5 shows counter-rotating vortices which indicate dominance of thermo- 
capillary force near the upper free surface. Figure 15(b) shows that the isotherms 
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FIGURE 17. to values of 

are slightly distorted in the vortex regions and remain nearly straight in the vicinity 
of the vertical walls. 

5.3. Higher aspect ratios: A = 12.5 and 25 
For A = 25 and Gr = 6 x lo3 the purely buoyancy-driven flow is steady as expected 
(figure 16a). The flow pattern is asymmetric and dominated by a single cell in front 
of the cold wall. This asymmetric monocellular solution was used as initial condition 
to carry out the solutions for more negative Reynolds numbers. The steady-state 
regime appears to be maintained from Re = 0 to roughly Re x -200 where a 
transition to a time-dependent state occurs. The spatial structure of this oscillatory 
flow can be analysed by looking at  the iso-$ lines at equally spaced instants in figure 
16bf).  A typical time history of $.,,, is displayed for Re = 200 in figure 17. 
Calculations have been carried out for a time long enough to reach the regime of 
constant amplitude fluctuations. Each frame of figure 16 exhibits a global circulation 
along the horizontal walls flowing from left to right (from hot to cold) a t  the top of the 
cavity and in the opposite sense a t  the bottom. Also several internal cells affecting 
the middle region (midplane) of the cavity are apparent in the figure. During a cycle, 
a seven-cell pattern is evident and the cells move from left to right; a new cell is 
created near the hot side (figures 16e and 16 f ) ,  while in the cold region the cells move 
close together until they merge (figure 16e). The internal cells result from the shear 
between two main opposite streams. Their strength is clearly non-uniform along the 
horizontal upper surface ; it  is weaker in the hot region and becomes stronger as the 
cells move towards the cold wall. The number of internal cells filling the cavity varies 
between seven and eight during one cycle, owing to generation or collapse of cells in 
the end regions. Unsteady solutions displaying similar characteristics are also found 
for a large thermocapillary effect, e.g. for Re = -300. A further decrease of Re 
eventually yields a steady multicellular flow (for Re x -500). For even smaller Re, 
a stronger restabilization is observed. 

The relative amplitude of the fluctuation of @,,,,,, A@m = A~,,,/$,,,, is 6.14% 
for Re = - 200 with a dimensionless frequency off = 4.32. The fluctuation amplitude 
and frequency are found to decrease with Reynolds number (i.e. A$, = 2.4% and 
f x 2.38 for Re = -300). Furthermore, the time evolution of the stream function 
through the cavity shows that the fluctuation amplitude continuously increases from 
left to right. The time history of the stream function at x = 0.5 is plotted in figures 

- 
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FIGURE 18. Time-dependent solutions in the opposing case for A = 25, Or = 6 x lo3 and 
Re = -2 x lo*. Time history of the stream function at two locations in the horizontal centreline : 
(a) y = +A and ( b )  y = $4. 

Time 

FIUURE 19. Time-dependent solution in the opposing case for A = 12.5, Gr = 6 x lo3 and 
Re = - 266. Time history of +mu. The symbols (a)-(!) correspond to values of time at which the 
iso-+ lines are given in figure 20. 

18 (a)  and 18 (b) for two locations corresponding to y = $A and !A, respectively ; these 
plots show that the relative amplitude of the fluctuations with respect to the local 
average value is approximately five times larger a t  y = !A than a t  y = :A. 

For A = 12.5 and Gr = 6 x lo3 steady flow solutions were obtained for Re values 
down to -200. An unsteady multicellular flow results at Re = -233 starting from 
the steady solution for Re = -200 as initial condition. When the Reynolds number 
is decreased to - 266, the solution is again unsteady ; we observe the development of 
the instability and its evolution to a time-periodic solution. Finally, when the 
Reynolds number is set to Re = - 300, a reverse transition occurs leading to a steady- 
state solution. Therefore, the onset of the unsteady flow is restricted to  a narrow 
range of negative Re : - 300 < Re < -200. 

fluctuations for Re = - 266. At the 
onset of unsteady flow the motion is typically time-periodic with a simple period. 
With decreasing Re, the amplitude of @max fluctuations becomes weaker (A@., = 
9% for Re = -233 and A@m = 7% for Re = -266). The structure of the unsteady 
flow is illustrated in figure 20 in which a time history of the stream function is shown 
at six instants over one period. A characteristic flow property at Re = - 266 is a large 
cell in the left part and a cell with stronger circulation which is seen to coalesce with 
an adjacent one near the cold wall. Near the hot wall a large cell arises and moves 

Figure 19 illustrates the time evolution of 
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FIGURE 20. As figure 19 but showing instantaneous iso-y? lines: (a)-(f) correspond to  time 
values in figure 19. The contour levels range from $,,, and zero in equal steps. 

towards the cold wall. Because the thcrmocapillary force exceeds the buoyancy force 
a tiny convective recirculation develops in the two upper corners. A qualitatively 
similar unsteady regime is obtained a t  Re = -233. 

We also note that the oscillation frequency decreases with decreasing Re; this 
phenomenon is also observed with A = 25. The oscillation frequency is about f = 3.67 
and 2.96 in terms of viscous time units for He = -233 and -266, respectively. 
It is noteworthy that for Gr = 6 x lo3 the frequency varies linearly with Re as 
shown in figure 21 where the dots represent the computed values in the domain 
-300 <Re < -200 for A = 25 and 12.5, and where solid line represents the linear 
relationship: f = a+b x Re, with a = 8.23 and b = 0.02. 

A theoretical study of an infinite horizontal layer by Laure & Roux (1989) has 
shown that the two-dimensional perturbation corresponds to a travelling wave 
propagating along the y-axis. Graphical evaluation of the non-dimensional 
wavelength in the central region of the cavity from the plot of the iso-$ lines for 
Gr = 6 x lo3 yields 3.35 f 0.25 and 3.24 k0 .25  a t  Re = -200 and Re = - 300, 
respectively. These values compare favourably to those obtained from the 
stability analysis of P. Laure (1989, private communication), 3.248 and 2.802 for 
Re/Gr = -0.033 and 0.050, respectively. The non-dimensional wave speed is defined 
as c = c * H / v .  where c* is the dimensional wave speed. The values of c are 14.70f 1.20 
and 8.165 1.16 a t  Re/Gr = -0.033 and -0.050, respectively; they also compare 
favourably with those obtained from stability analysis, 13.44 and 6.64, respectively. 

In summary, a major modification of the dynamics in differentially heated cavities 
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Re 

FIGURE 21. Non-dimensional frequency of the simply periodic regimes as a function of 
Reynolds number for Cr = 6 x 10' and two aspect ratios: A = 12.5 and 25. 

has been shown to occur in a certain range of negative Re. For small IRel, 
thermocapillarity favoured the onset of an unsteady flow which remains essentially 
driven by buoyancy forces. In particular, we have not seen the onset of instabilities 
for the lowest investigated Grashof number, i.e. Gr = 3 x lo3. This observation is 
consistent with the results of a stability analysis by Laure & Roux (1989) leading to 
a lower limiting value of Gr x 5.16 x lo3 (for Re w -300). For large(Re1, oscillations 
induced by the buoyancy effect can be damped leading to a reverse transition to 
steady state as for large positive Re. This feature is consistent with the fact that, for 
a given Gr, the flow structure has to become more and more symmetrical for larger 
and larger IRel. 

6. Steady flow results (large IRel) 
6.1. Effect of aspect ratio; additive case (Re > 0) 

As previously mentioned, steady-state solutions prevail in a certain Re-range (which 
depends on the value of Gr).  For the largest aspect ratios, A = 12.5 and 25, the 
multicellular character of the flow becomes more and more pronounced as Re is 
increased, as can be seen by comparing the streamline patterns for several Reynolds 
numbers, Re = 1.33 x lo3, 3.33 x lo3 and lo4 in figures 22,23 and 24 respectively. The 
effect of the aspect ratio is also displayed in these figures where the qualitative 
changes in the structure of the steady flow are clearly visible. In general, a vortex has 
already appeared near the cold wall for Re = 0 and its strength increases with Re ; for 
A = 12.5 and 25 additional co-rotating cells are created as the Reynolds number is 
increased. Most of the flow circulates in a fictitious cavity of much smaller aspect 
ratio than the actual cavity. Note that for the two Grashof numbers investigated, 
Gr = 3 x lo3 and 6 x lo3, the flows appear to have a qualitatively similar structure ; a 
multicellular region develops in front of the cold wall and a boundary layer whose 
thickness decreases with Re forms close to the upper surface. The two regions are 
more evident at higher Re and in the cellular region numerous corotating cells exist. 
In the additive case at a given Reynolds number, the number of cells is larger for 
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Gr = 6 x lo3 than for Gr = 3 x lo3 (see figure 25). Moreover, as Re is further increased 
counter-rotating flows merge at the bottom wall ; the outer one is shown to expand 
towards the hot isothermal wall and occupy most of the bottom region. Also, the 
streamlines are more crowded near the free surface, indicating high velocities. 

6.2. Effect of aspect ratio on the flow structure ; opposing case (Re < 0 )  

To focus attention on the case of opposing thermocapillary and buoyancy forces, 
computations were carried out for Gr = 3 x lo3 and 6 x lo3 and for IRe( < 1.67 x lo4 
leading to Bd ranging from - 00 to -0.18. The main feature of the flow is that in the 
range of negative Reynolds numbers investigated, two separated flows occupying the 
total length of the cavity are shown to exist (figure 26 ; for Bd w - 6) : one is generated 
by buoyancy forces, rising along the hot wall (left side) and circulating from cold to 
hot along the bot,tom wall, while the second is thermocapillary driven, circulating 
from cold to  hot along the upper surface. This behaviour compares well with the 
numerical results of Villers & Platten (1985) showing two contrarotative cells, and 
with the experimental results of Villers & Platten (1987b) in a rectangular cavity 
filled with a water-n-heptanol mixture where it was shown that two kinds of 
convections exist over a certain range of the cavity height. Two separated, counter- 
rotating cells occupy the cavity, with the upper one thermocapillary driven and the 
lower one buoyancy driven. Below a certain value of the cavity height the buoyancy- 
driven cell vanishes. The results presented in figures 27 and 28 for large enough lRel 
where thermocapillarity dominates (i.e. Bd > -6) can be compared to the case of 
positive Re ; the latter leads to a flow circulating in the opposite direction (from cold 
to  hot along the upper surface) but the main flow structure is qualitatively the same 
(except for a very small recirculating buoyancy-driven flow in the right bottom 
corner). Also the emergence of supplementary cells with increasing lRel can be 
observed. 

It is interesting to  note that the calculations of Bergman & Keller (1988) made for 
smaller aspect ratios, A = 0.5, 1 and 2, showed similar flow patterns for a purely 
buoyancy-driven flow and for the ‘additive case’. The latter leads to an increase in 
the strength of the flow which is evident from the magnitude of the stream function 
in the centre of the cells. In  the opposing case two cells separated by a tilted interface 
develop in a square cavity ( A  = 1 )  while in the additive case the patterns are simply 
one large cell occupying the entire volume. For a large lBdl (e.g. Bd A2 = - 100) the 
flow pattern changes ; thermocapillary flow manifests itself in a thin layer close to the 
upper surface while the buoyant flow dominates over the rest of the cavity. 

6.3. Surface velocity 
The dependence of surface velocity a t  y = 14, in terms of Re (for positive and for 
negative Re) has been analysed for different Gr, in terms of w,*,,~ = vSurf Hlv,  where 
vSnrf is the dimensional surface velocity. The vZurf curves are displayed in figures 29 (a)  
and 29(b) for A = 4 and A = 25 respectively. At sufficiently large JRel, in fact for 
Re w Gr, they asymptotically approach the curve for Gr = 0 ipure thermocapillary 
flow), indicating that buoyancy effects become negligible. This is in agreement with 
the concluding remarks of Metzger & Schwabe (1988) and with the recent results of 
Bradley & Homsy (1989) who presented scaling analysis and computations for 
combined convection in a square cavity, showing a dominant thermocapillary effect 
at large enough Re. 

Furthermore, experimental results of Metzger & Schwabe (1988) concerning the 
surface velocity for different aspect ratios (see their figure 25), and therefore for 
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FIQURE 30. Non-dimensional horizontal surface velocity as a function of IRel/&g for 
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FIGURE 31. Non. 
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FIGURE 32. Vertical velocity profiles in the opposing case at y = &4 for 
A = 12.5 and Gr = 6 x lo3. 

different Bond numbers, show that the influence of the increasing Bond number 
(1 < Bd < 165) is more effective for deep cavities ( A  < 1) than for shallow cavities 
( A  > 1). For A = 2 the dominant effect appears to be the thermocapillary flow. 

In a previous paper by Ben Hadid et al. (1989) the numerical solutions of the 
dimensionless surface velocity were shown to merge into a single curve when scaled 
in the following way: 

or (7) 

with a = 2.22 and b = - 3.15 for A = 25. This correlation is also valid for other aspect 
ratios like A = 4 and 12.5, but with different values of a and b. Figure 30 shows such 
a correlation, for A = 4;  it  can be compared to figure 29(a). 

A more universal correlation, involving the aspect-ratio effect, can be obtained 
through the logarithmic plot of v,,,,/A~ versus IRel/Gr: as shown in figure 31 for 
A = 4, 12.5 and 25. In this figure the two sets of points for A = 12.5 and A = 25 fall 
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FIQURE 33. Steady flow structures in the opposing case for A = 12.5, Gr = 6 x lo3 and conducting 
horizontal boundaries. (a*) Streamline patterns for: Re = -3.333 x loa, Re = -6.666 x lo3 and 
Re = - 1.6667 x lo4, respectively. (d-f) Isotherms for Re = - 3.333 x lo3, Re = -6.666 x lo3 and 
Re = - 1.6667 x lo4, respectively 

onto a single curve. This curve and the curve corresponding to A = 4 become closer 
and closer for increasing IRel/Gri; their slope asymptotically approaching 2.3 (solid 
line) beyond a particular value of IRel/Gri, close to 3,  where the (surface) boundary- 
layer regime is dominantly induced by thermocapillarity . Such a transition was 
found previously by Ben Hadid et al. (1988) for purely thermocapillary-driven flow. 
Finally, the following relation is proposed for the boundary-layer regime : 

lv$urpl = At [a’Gri+b’lRelg] (8) 

where lv$urfl = Gr~~vSurp~  = H/v~vsurf~. The values of the constants obtained in this 
2-2 
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FIQURE 34. Steady flow structures in the opposing case for A = 12.5, Gr = 6 x lo3 and insulated 
horizontal boundaries. (a*) Streamline patterns for Re = -3.333 x lo3, Re = -6.666 x lo3 and 
Re = - 1.6667 x lo4, respectively. ( d - f )  Isotherms for Re = -3.333 x lo3, Re = -6.666 x lo3 and 
Re = - 1.6667 x lo4, respectively. 

study over the range 4 < A  < 25, Gr < lo4 and lRel < 1.7 x lo4 are a’ = 0.75 and 

A typical dimensionless horizontal velocity profile in the median plane (at y = $4) 
with respect to the depth of the cavity is shown in figure 32 for Gr = 6 x lo3 and 
various negative Re-values. The role of the thermocapillary flow is more evident from 
these profiles which change substantially when (Re1 increases. The surface velocity 
continuously increases with (Re(, but the variation of the velocity in the lower part 
of the cavity is no longer monotonic: for small values of lRel there is a relatively 
quiescent zone there. When lRel is further increased, the velocity in the lower part of 

b’ = - 1.08. 
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FIQURE 35. Maximum surface velocity wsurf as a function of lRel for A = 12.5, Gr = 6 x lo3. 

the cavity increases. This is probably due to the increase of the magnitude of the 
counter-rotating flow induced by viscous interaction between the surface cell and the 
cell near the bottom wall. This viscous effect increases as the thermocapillary 
convection increases. In  addition it is noteworthy that the surface cell is more and 
more concentrated near the free surface when ]Re1 increases, and thus buoyancy 
forces become dominant over an increasing portion of the cavity and in particular 
near the bottom wall. 

6.4. Effects of the thermal boundary conditions ; opposing case (Re < 0 )  
The effect of thermal conditions along the horizontal boundaries on the flow 
structure and the corresponding thermal field is also interesting. The two limit cases 
with perfectly conducting and perfectly insulating boundaries have been considered 
for A = 12.5 and Gr = 6 x los for different negative Reynolds numbers. The 
streamlines and the thermal fields are displayed in figure 33 for the conducting 
case, and in figure 34 for the insulating case. For Re = -3.33 x lo3 (figures 33d 
and 34d) the flow exerts only a small effect on the thermal field and for increasing 
[Re1 the influence of the flow on the thermal field increases. Furthermore, a t  larger 
values of (Re1 (Re = -6.67 x lo3 and - 1.67 x lo4) the resulting thermal fields are 
different, mainly in the cellular regions, while no significant variation in the flow 
patterns is observed qualitatively. On the right side of the cavity, e.g. the non- 
cellular flow region, the isotherms are only slightly distorted indicating that the heat 
transfer is mainly by conduction, while a strong thermal stratification is exhibited on 
the left side owing to the strong convective motion in the vortex regions., Figure 35 
shows the evolution of the maximum surface velocity with respect to pel, for both 
the conducting and insulating cases. The two velocity curves merge for low IRel and 
separate for Re < - 2.5 x lo3; a difference of about 16 % exists at Re = - 1.67 x lo4, 
the surface velocity being higher for the conducting case. Finally, the surface 
temperature evolution is given for the insulating case in figure 36 for 0 < y C 5. (It 
is imposed and linear in the conducting case.) The surface temperature decreases 
quite linearly in the right-hand-side region when y increases, but a pronounced 
curvature exists in the left-hand side (near the hot wall). The temperature deviation 
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FIGURE 36. Surface temperature profiles for A = 12.5, Gr = 6 x lo3 and 
several negative Reynolds numbers. 

from the linear profile becomes more and more pronounced as (Re1 increases, which 
is consistent with the stronger and stronger circulation observed in figures 27 and 28. 

7. Summary and concluding remarks 
This study is focused on the convective flow driven by combined buoyancy and 

thermocapillary forces in shallow cavities for A 2 4 and in particular on how the flow 
regime is related to the relative strength and sense of the two forces. A number of 
numerical experiments were performed illustrating the influence of the dimensionless 
governing parameters, Or, Re and A ,  on the flow-field variables and the flow regimes. 
It is demonstrated by numerical simulations that a variety of flow structures and 
dynamical behaviour can occur in a two-dimensional, combined buoyancy and 
thermocapillary driven convection when the aspect ratio is equal to 4, 12.5 and 25. 
The effect of thermocapillary forces on an established buoyant flow has been 
emphasized for both the additive (Re > 0) and opposing (Re < 0) cases. For Re > 0, a 
solution was found to converge to a steady-state regime for all the investigated Re- 
range when started from an established steady buoyancy-driven flow. As Re is 
increased, several cells successively appear in the cold region where the highest 
velocity is located. At a given aspect ratio, the maximum number of cells depends on 
Gr and Re. In  the range of Gr-values investigated the influence of the buoyancy force 
is limited a t  low Reynolds values. For large Re the thermocapillary flow is nearly 
independent of Gr and, therefore, is always the dominating factor; there is no 
appreciable variation in the surface velocity with Grashof number for Re > 3 x los. 

For negative Reynolds numbers, however small, the most important result is that 
an unsteady flow regime can occur, in certain circumstances, even for a value of 
Grashof number below that obtained in very shallow cavity (A+co)  for purely 
buoyancy-driven convection, e.g. Gr = 6 x lo3. The flow which would be steady 
in the buoyancy-driven case, changes from steady to unsteady multicellular flow 
and returns to steady multicellular flow upon increasing JRel. It is not obvious 
why the possibility of an oscillatory state is enhanced but it undoubtedly is of 
dynamical nature; the combined flow seems to be least stable in a specific range 
-0.08 < Re/Gr < -0.013. The likelihood of the onset of an oscillatory regime for 
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a subcritical Grashof number probably can be correlated with some property of 
the velocity profile (e.g. the displacement of the inflexion point of the velocity). For 
example, in the TollmienSchlichting boundary-layer stability results, for forced 
convection, the role of such an inflexion point in the velocity profile has been proven. 
From the analytical expression of the horizontal velocity (assuming the flow to be 
steady for an infinite long layer A + GO and u = 0 ,  v = w(x) ; see e.g. Kirdyashkin 
1984) such an inflexion point has to occur in the interval 0 < x < 1, in the range 
-0.416 < R e / G  < 0.25. 

We also note that for small Grashof number (e.g. Gr = 3 x lo3), a steady-state 
solution prevails in the whole range of Reynolds numbers investigated. We suspect 
that there is a critical Grashof number below which the effect of the thermocapillary 
forces is no longer destabilizing. This conclusion is supported by a linear stability 
analysis which leads to a limiting Grashof number equal to 5.156 x lo3. We have not 
precisely determined the critical destabilizing (stabilizing) Reynolds number for 
which the resulting combined flow attains a new unsteady (steady) state. To locate 
such a critical value requires a very detailed search and even in two-dimensional 
simulations this requires a prohibitively long computing time. 

Unfortunately, there appear to be no data available in the literature for 
comparison. More experimental work as well as modelling must be done in order to 
glean more insight into the various flow regimes (velocity fields and flow structures). 
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